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ABSTRACT
To reduce the need of secondary data and/or accurate prior
knowledge of the clutter statistics in space-time adaptive pro-
cessing (STAP), we present herein a user parameter-free and
secondary data-free fully automatic weighted least squares
based iterative adaptive approach (IAA) to angle-Doppler
imaging for airborne surveillance radar systems.

1. INTRODUCTION

In conventional STAP, the clutter-and-noise covariance ma-
trix of the range bin of current interest, let us call it RCN, is
estimated from secondary data (presumed to be target free and
homogeneous). Given, say N adjacent range bins (snapshots)
denoted as {z(n)}N

n=1, RCN is estimated by means of the well-
known formula to compute the sample covariance matrix (see,
e.g., [1, 2]):

R̂CN =
1
N

N∑

n=1

z(n)z∗(n), (1)

where (·)∗ denotes the conjugate transpose. However, fre-
quently the dimension of RCN (denoted by M in what follows)
is larger than N due to the inhomogeneous nature of the clut-
ter and the fact that the adjacent range bins are not necessarily
target free. The result is that R̂CN is, more often than not, a
poor estimate of RCN.

Getting high quality secondary data has turned out to be a
challenging problem. As a result, knowledge-aided STAP has
been attracting attention lately (see, e.g., [2–4] and the refer-
ences therein). However, getting accurate prior knowledge of
the clutter statistics can be rather expensive. And using inac-
curate prior knowledge can degrade rather than improve the
STAP performance (see, e.g., [4]).

To reduce the need of secondary data and/or accurate
prior knowledge of the clutter statistics, many approaches
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have been considered in the literature (see, e.g., [5] - [9]).
The joint-domain localized approach proposed in [5] re-
quires using the delay-and-sum (DAS) (i.e., least-squares or
matched filter) type of approaches to transform the data into
the angle-Doppler domain. It is well-known, however, that
such data-independent approaches suffer from broad main-
beam (smearing) and high sidelobe level (leakage) problems
that can degrade the target detection performance signifi-
cantly. For the case of ULAs and constant PRFs, one can
form multiple “snapshots” by taking sub-apertures in both
space and time (see, e.g., [6]). However, this is done at the
cost of reduced resolution. Moreover, in practice, the arrays
many not be uniform and linear. The parametric approaches
considered in [8,9] model the clutter and noise as a vector au-
toregressive (VAR) random process. However, the parametric
approaches may be sensitive to model errors, which may oc-
cur in the presence of spatial and temporal decorrelation due
to intrinsic clutter motion. The global matched filter approach
considered in [7] can be used to form angle-Doppler image of
both clutter and targets for each range bin using only the data
from that range bin (primary data). The approach belongs to
the class of sparse signal representation methods. However,
these sparse signal representation algorithms usually require
large computation times and the tuning of one or more user
parameters, which may limit their practicality.

We present herein a user parameter-free and secondary
data-free fully automatic angle-Doppler imaging approach for
STAP by means of a weighted least-squares based iterative
adaptive approach (IAA) [10]. IAA is a robust nonparametric
adaptive algorithm that can work with few or even a single
snapshot, arbitrary array geometries, and random time sam-
ples. In the IAA-based STAP, we apply IAA to form a high-
resolution angle-Doppler image of both clutter and targets for
each range bin of interest using the primary data only. The
high resolution angle-Doppler images formed by IAA can be
exploited further to identify clutter inhomogeneity and strong
clutter discretes, check the accuracy of the prior knowledge,
and combine with localized detection approaches as well as
other target tracking approaches for target detection.
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2. ANGLE-DOPPLER IMAGING VIA IAA
Assume that the radar system has L antennas and P pulses.
Then M = PL. Within a coherent processing interval (CPI),
we assume that echoes from I range bins are collected by the
radar. For a fixed elevation angle, a target can be specified
by its range index i, azimuth angle (or spatial frequency ωS),
and Doppler frequency ωD. Its “nominal” space-time steering
vector a(ωS, ωD) ∈ C

M×1 can be expressed as follows:

a(ωS, ωD) = ã(ωD) ⊗ ā(ωS), (2)

where ⊗ denotes the Kronecker matrix product. For the case
of a ULA and a constant PRF, for example,

ā(ωS) =
[

1 ejωS · · · ej(L−1)ωS
]T

, (3)

and
ã(ωD) =

[
1 ejωD · · · ej(P−1)ωD

]T
, (4)

where (·)T denotes the transpose. However, IAA is equally
applicable to the case of arbitrary array geometries and/or
time-varying pulse repetition intervals.

For each ROI, we scan over both angle and Doppler di-
mensions to form its angle-Doppler image, i.e., to compute
the two-dimensional power distribution of targets as well as
clutter-and-noise, using the primary data only. For notational
convenience, we drop below the dependence on the range bin
index. Assume that the number of angular and Doppler scan-
ning (grid) points are K̄ and K̃, respectively, which determine
the smoothness of the angle-Doppler image formed by IAA.
Then the total number of scanning points is K = K̄K̃. Let P
be a diagonal matrix of dimension K with the powers of the
scanning points on the diagonal. Given P, we can construct
the following IAA covariance matrix for the ROI:

RIAA = APA∗, (5)

where A = [a(ωS1 , ωD1),a(ωS1 , ωD2), · · · ,a(ωSK̄
, ωDK̃

)] is an
M × K steering matrix. Given RIAA in (5) and also the pri-
mary data vector y for the ROI, an estimate of the power Pk̄k̃,
denoted as P̂k̄k̃, at the scanning point (ωSk̄

, ωDk̃
), can be com-

puted as:

P̂k̄k̃ =

∣∣∣∣∣
a∗(ωSk̄

, ωDk̃
)R−1

IAA y

a∗(ωSk̄
, ωDk̃

)R−1
IAA a(ωSk̄

, ωDk̃
)

∣∣∣∣∣

2

, (6)

where Pk̄k̃ is a diagonal element of P, and | · | denotes the
absolute value. Since IAA requires RIAA, which depends on
the unknown powers, it must be implemented as an iterative
approach. The initialization is done by the standard DAS
beamformer, i.e., the so-called matched filter, where the sig-
nal power is determined in the same way as IAA except that
RIAA in (6) is replaced by the identity matrix I. The IAA al-
gorithm is summarized in Table 1. The iterative process stops
when a prescribed iteration number is achieved. This number

is set to 10 in our simulations as we have observed no obvious
performance improvement beyond 10 iterations. It is clear
from the above discussions that the IAA-based angle-Doppler
imaging approach is both user parameter-free and secondary
data-free.

Table 1. The IAA algorithm
initialize Pk̄,k̃(i) = 1

M2

∣∣a∗(ωSk̄
, ωDk̃

)y
∣∣2,

k̄ = 1, · · · , K̄, and k̃ = 1, · · · , K̃
repeat RIAA = APA∗

for k̄ = 1, · · · , K̄

for k̃ = 1, · · · , K̃

Pk̄,k̃ =
∣∣∣∣

a∗(ωSk̄
,ωD

k̃
)R−1

IAAy

a∗(ωSk̄
,ωD

k̃
)R−1

IAAa(ωSk̄
,ωD

k̃
)

∣∣∣∣
2

end
end

until a certain number of iterations is reached

The computationally complexity of IAA is on the order of
O(M2K), where K � M is the number of grid points in the
angle-Doppler image. The computational complexity of IAA
can be significantly reduced for the case of ULAs and con-
stant PRFs by exploiting the Toeplitz-block-Toeoplitz struc-
ture of RIAA [11].

3. NUMERICAL EXAMPLES
3.1. Simulated Data

In our simulations, we employ the same parameters as those
used to generate the KASSPER data [12] to simulate realis-
tic inhomogeneous clutter. Consider an airborne radar system
with P = 32 pulses and L = 11 spatial channels, yielding
M = PL = 352 degrees-of-freedom (DOFs). The main-
beam of the radar is steered toward an azimuth angle of 195◦

measured clockwise from the true north and an elevation of
-5◦ relative to the horizon. For each CPI, a total of I = 1000
range bins are sampled covering a range swath of interest
from 35 km to 50 km. Since RCN, R̂CN, and RIAA all vary with
the range bin index i, in what follows, we will indicate explic-
itly the dependence of these covariance matrices on the range
bin index for the sake of clarity. We generate the clutter-and-
noise data for the ith range bin as:

ei = R1/2
CN (i)vi, i = 1, · · · , I, (7)

where (·)1/2 denotes a Hermitian square root of a matrix and
{vi} ∈ C

M×1 are independent and identically distributed
(i.i.d.) circularly symmetric complex Gaussian random vec-
tors with mean 0 and covariance matrix I.

3.1.1. Angle-Doppler Imaging

Consider the angle-Doppler imaging performance in the pres-
ence of targets. We insert a total of K0 = 200 targets spread
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over the entire range-Doppler map at the azimuth angle of
195◦. Each target is assumed to have a constant power σ2

0 ,
as shown in Figure 1, where the ground truth is denoted by
“o”. In our simulations, the targets have an average signal-to-
clutter-and-noise ratio (SCNR) of -18.9 dB, where the average
SCNR is defined as:

1
K0

K0∑

k=1

tr
[
σ2

0a0(ωS0 , ωDk
)a∗

0(ωS0 , ωDk
)
]

tr [RCN(ik)]
. (8)

In (8), a0(ωS0 , ωDk
) is the true steering vector corresponding

to the fixed spatial frequency ωS0 for the 195◦ azimuth angle
and the Doppler frequency ωDk

for the kth target at range bin
ik. The power estimate obtained from the received signal yi,
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Fig. 1. Ground truth of targets.

which consists of both clutter-and-noise ei and targets, at a
given angle and Doppler pair (ωS, ωD) is computed, similarly
to (6), as follows:

∣∣∣∣∣
a∗(ωS, ωD)R̃−1(i)yi

a∗(ωS, ωD)R̃−1(i)a(ωS, ωD)

∣∣∣∣∣

2

. (9)

We compare the performance achieved by using the covari-
ance matrix RIAA(i) to those corresponding to various alter-
native covariance matrices, namely: the true clutter-and-noise
covariance matrix RCN(i), the true target-clutter-and-noise co-
variance matrix RTCN(i), and an imprecise prior knowledge-
based covariance matrix R0(i). For the clairvoyant case of
known RTCN(i), RTCN(i) is assumed to be:

RTCN(i) = RCN(i) +
K0(i)∑

k=1

σ2
0a0(ωS0 , ωDk

(i))a∗
0(ωS0 , ωDk

(i)),

(10)
where K0(i) denotes the number of targets for the ith range
bin and ωDk

(i) denotes the Doppler frequency of the kth target
at the ith range bin. In our simulations, R0(i) is constructed
as a perturbed version of the true RCN(i) [4]:

R0(i) = RCN(i) � tit∗i , (11)

where � denotes the Hadamard matrix product, and ti is a
vector of i.i.d. complex Gaussian random variables with mean
1 and variance σ2

t = 0.1.

We now compare the angle-Doppler images formed with
IAA and other methods for the ROI with range bin index
i = 66. Figures 2 and 3, respectively, are for the cases of
without and with array steering vector errors. Figures 2(a) and
3(a) are obtained by using the true target-clutter-and-noise co-
variance matrix RTCN(i) in lieu of R̃(i) in (9). Note that in
the absence of steering vector errors, the angle-Doppler im-
age formed by using RTCN(i) is very sharp, with the clutter
well focused along the diagonal ridge and the two moving tar-
gets clearly visible. In the presence of steering vector errors,
however, the angle-Doppler image formed by using RTCN(i) is
much worse, due to the well-known signal cancellation prob-
lems of standard Capon beamformer (SCB)[SCB corresponds
to using RCN(i) in lieu of R̃(i) in (9)] [13].

Figures 2(b) and 3(b) are obtained by using the prior
knowledge of the clutter-and-noise covariance matrix, R0(i),
which is a perturbed version of the true clutter-and-noise
covariance matrix RCN(i). Note that the angle-Doppler im-
ages formed by using the wrong prior knowledge are rather
smeared and are of poor quality. Figures 2(c) and 3(c) are ob-
tained by using the true clutter-and-noise covariance matrix
RCN(i). Note the obvious smearing caused by the presence of
the moving targets. This result occurs because RCN(i) does
not contain the target information and hence the adaptive pro-
cessing is not adapted to the presence of targets. Therefore,
the power estimation using RCN(i) in general is not optimal
in any sense. (The only optimal case is when there is a sin-
gle target at the range bin and the steering vector is pointed
precisely at the target location.) Figures 2(d) and 3(d) are
generated by using the DAS approach [i.e. using R̃(i) = I in
(9)]. Due to the smearing and leakage problems of DAS, the
two moving targets are barely visible.

Figures 2(e) and 3(e) are obtained by using IAA. The IAA
images are obtained by using a uniform angular scanning grid
for the azimuth angle ranging from 90◦ to 270◦ with a 2◦

grid size, i.e., K̄ = 90, and also a uniform Doppler scanning
grid for the Doppler frequency ranging from −π to π with
K̃ = 256. Note that the two moving targets are clearly visi-
ble both with and without the steering vector errors. In the ab-
sence of steering vector errors, the IAA image is close to the
clairvoyant image of known RTCN(i). In the presence of steer-
ing vector errors, the angle-Doppler image formed by IAA is
better than the clairvoyant image of known RTCN(i), due to the
robustness of IAA against steering vector errors. The robust-
ness of IAA is due to the fact that the steering vectors used to
form RIAA(i) are not the true ones, but the assumed ones and
using the same assumed steering vectors with RIAA(i) will not
result in severe signal cancellation.
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Fig. 2. Angle-Doppler images for the i = 66th range bin
obtained by using (a) RTCN(i), (b) R0(i), (c) RCN(i), (d) DAS,
and (e) IAA, in the absence of steering vector errors. The two
circles indicate the true locations of the two moving targets.
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Fig. 3. Angle-Doppler images for the i = 66th range bin
obtained by using (a) RTCN(i), (b) R0(i), (c) RCN(i), (d) DAS,
and (e) IAA, in the presence of steering vector errors. The two
circles indicate the true locations of the two moving targets.
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3.1.2. Target Detection

Below, we consider using the angle-Doppler images gener-
ated by IAA with a simple median detector for target detec-
tion. The full potential offered by exploiting the high quality
angle-Doppler images formed by IAA can be investigated fur-
ther. This, however, is beyond the scope of the current paper.

We consider target detection using the angle-Doppler im-
ages generated by using the various covariance matrices with
ωS fixed to ωS0 corresponding to the 195◦ azimuth angle. For
the range-Doppler image corresponding to a specific range
bin, the clutter discretes and the targets will look alike. There-
fore, we need a way to distinguish between targets and clut-
ter to avoid false alarms. One might think of discarding the
peaks that are close to the diagonal clutter ridge. This would
require prior knowledge on operating parameters of the radar,
and also there is no clear guidance as to how to determine
the “width” of the ridge. Another way, which will be used
here, is to rely on the assumption that for the fixed angle and
a given Doppler bin, the clutter peaks will be nearly the same
in a few (say, 10) range bins that are adjacent to each ROI,
whereas the target peaks are not so “dense” in range. We use
a median constant false alarm (CFAR) detector, which has the
following form [3]:

10 log10

∣∣∣∣∣
a∗(ωS, ωD)R̃−1(i)yi

a∗(ωS, ωD)R̃−1(i)a(ωS, ωD)

∣∣∣∣∣

2

−10 log10 η(i, ωS0 , ωD)
H1

≷
H0

ξ, (12)

where H0 is the null hypothesis (i.e., no target), H1 is the
alternative hypothesis (i.e., H0 is false) and ξ is a target de-
tection threshold. The background clutter-and-noise level
η(i, ωS0 , ωD) for range bin i, spatial frequency ωS0 , and
Doppler frequency ωD is estimated as the median value of the
set of power levels from 10 adjacent range bins at (ωS0 , ωD).
For each threshold ξ, the number of correct target detections
as well as the number of false alarms are recorded to yield the
receiver operating characteristic (ROC) [i.e., the probability
of detection (PD) versus the probability of false alarm (PFA)]
curves. In our simulations, the kth target with Doppler fre-
quency ωDk

is considered to be detected correctly if there are
any number of detections in the ikth range bin falling within
the interval (ωDk

− π/32, ωDk
+ π/32). We remark that the

median CFAR detector does not use the data from the adja-
cent range bins in the same way as the conventional STAP
approaches do since the adjacent range bins are used by the
detector after space-time adaptive processing and are for lo-
cal comparison of power levels only. The conventional STAP
approaches use the secondary data for space-time adaptive
processing.

In Figure 4, we show the ROC curves of the IAA-based
median detector [(12) with R̃(i) replaced by RIAA(i)]. For
comparison purposes, we also show the ROC curves corre-

sponding to the detectors with RTCN(i) known precisely [(12)
with R̃(i) replaced by RTCN(i)], with RCN(i) known precisely
[(12) with R̃(i) replaced by RCN(i)], and also with RCN(i)
known imprecisely [(12) with R̃(i) replaced by R0(i)]. Fig-
ures 4(a) and 4(b) are for the cases of without and with
steering vector errors, respectively. As we can see, in the
absence of steering vector errors, the detection performance
of using the angle-Doppler images obtained by IAA almost
coincides with that of the clairvoyant case where RTCN(i) is
known precisely. In the presence of steering vector errors,
however, using the angle-Doppler images obtained by IAA
outperforms even the clairvoyant case of using the precisely
known RTCN(i). This is not surprising because SCB is sen-
sitive to array steering vector errors whereas IAA is robust
against such errors. Note also that using the angle-Doppler
images obtained by IAA outperforms the case of using pre-
cisely known RCN(i) as well.

3.2. KASSPER Data

Finally, we evaluate the performance of IAA using the
KASSPER data [12]. In addition to the inhomogeneous
clutter (with RCN(i) varying with range bin i), the KASSPER
data also include many real-world scenarios, such as subspace
leakage, array calibration errors (and hence steering vector
errors), and many ground targets. Moreover, some of the
targets have rather weak power levels and some of them are
very slowly moving, which makes the KASSPER data more
challenging than our simulated data.

The radar main-beam of the KASSPER data has a width
of 10◦. The radar attempts to detect targets in the azimuth
range of [190◦, 200◦] instead of a fixed azimuth angle of 195◦.
Therefore, in addition to range and Doppler, the azimuth an-
gle is treated as another dimension (in our simulated data,
we fixed the azimuth angle at 195◦). Given the spatial and
Doppler frequency pair (ωSk

, ωDk
) of the kth target, the target

is considered to be detected if there are any number of de-
tections in the ikth range bin falling within the area of (θk −
5◦, θk + 5◦) and (ωDk

−π/32, ωDk
+ π/32). The correspond-

ing ROC curves are shown in Figure 5. (Note that the target
power information used to generate the KASSPER data is not
available to us. Therefore, RTCN(i) is unknown and the corre-
sponding ROC curve is not shown in Figure 5.) Again, IAA
gives the best performance and outperforms even the detector
using the perfect prior knowledge of RCN(i).

4. CONCLUSIONS

We have presented a nonparametric iterative adaptive ap-
proach (IAA) to angle-Doppler imaging for airborne surveil-
lance radar systems. IAA is robust and user parameter free
and it requires no secondary data. Due to adapting to both
clutter and targets, the angle-Doppler images formed via IAA
have much higher resolution and much lower sidelobe levels
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than conventional approaches. We have used both simulated
and KASSPER data to demonstrate the usefulness of using
IAA to form high quality angle-Doppler images for STAP
applications.
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Fig. 4. ROC curves for our simulated data, generated by using
the KASSPER clutter parameters, for the cases of: (a) without
steering vector errors, and (b) with steering vectors errors.

10−4 10−3 10−2 10−1 1000

0.2

0.4

0.6

0.8

1

PFA

PD

RCN known precisely
RCN known imprecisely
IAA

Fig. 5. ROC curves for the KASSPER dataset.
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